
Appendix B. Automobile Cruise Control and Monitoring System Case Study

This appendix presents an application of the proof-of-concept prototype, CODA,

described in Chapter 10, to an automobile cruise control and monitoring system. The

specification for this system consists of a set of data/control flow diagrams, arranged

hierarchically, two state-transition diagrams, and a textual description. The specification

is taken from Gomaa.1 [Gomaa93, Chapter 22] Figure 34 shows the context diagram for the

problem. The context diagram is annotated with information inferred, or elicited from the

designer, as a result of applying the prototype to analyze the specification. The

annotations are shown on the diagram, and on all subsequent data/control flow diagrams,

enclosed within square brackets and set off in italicized print. Symbols, defined in Table

31, are used with each annotation to indicate the source of the information.

The context diagram depicted in Figure 34 differs from Gomaa’s context diagram

in only two ways. First, events arriving from external devices are shown in Figure 34 as

dashed, directed arcs. These events are not shown in Gomaa’s context diagram, but can

be inferred to exist from reading the accompanying textual specification. These events

must be added to the data/control flow diagram to allow CODA to make proper

inferences about the terminators. Second, some of the elements in the diagram are named

1 The automobile cruise control and monitoring system is a well-known, real-time
problem that is often cited in the literature. The interested reader might wish to consult
other treatments of this problem. [Bollinger88, Brackett87, Caromel93, Gomaa94, Hatley87, Jones89,
Jones90, Jones94, Mellor86, Sanden94, Shaw95, Smith88]

457

Automobile
Cruise

Control and
Monitoring

0

Four
Position
Lever

[Device @]

Calibration
Push

Buttons
[Device @]

Mileage
Display
Panel

[Device @]

Mileage
Reset
Push

Buttons
[Device @]

Maintenance
Reset
Push

Buttons
[Device @]

Brake
Sensor

[Device @]

Throttle
Mechanism
[Device @]

Gas Tank
Sensor

[Device @]

Digital
Clock

[Device @]

Engine
Sensor

[Device @]

Drive
Shaft

Sensor
[Device @]

Maintenance
Display
Panel

[Device @]

Cruise
Control
Input

[Input =]

Mileage
Display

Data
[Output =]

Calibration
Input

[Input =]

Mileage
Display

Data
[Output =]

Mileage
Reset
Input

[Input =]

Maintenance
Reset Input

[Input =]

Shaft
Interrupt

[Interrupt =]

Engine
Input

[Input =]

Brake
Input

[Input =]

Time
[Input =]

Fuel
Amount
[Input =]

Throttle
Position

[Output =]

Lever
Interrupt

[Interrupt =]

Figure 34. A
nnotated C

ontext D
iagram

 for A
utom

obile C
ruise C

ontrol and M
onitoring

System

differently from the names assigned by Gomaa. This renaming allows each element in

the specification to have a unique name.

Table 31. Symbols Used to Annotate Data/Control Flow Diagrams

Symbol Meaning

#
This classification is directly representable in the Specification
Meta-Model.

@ CODA elicited this classification from the user.

= CODA made this classification.

?
CODA tentatively made a classification, but the user was asked to
confirm or override that classification.

+
CODA elicited additional information from the user and then made this
classification based on that additional information.

* CODA elicited this information from the user.

Data/control flow diagrams for most large systems are arranged hierarchically to

help human beings better comprehend the specification. CODA, however, works from a

flattened hierarchy of data/control flow diagrams. The hierarchical form of the

data/control flow diagrams is retained in the following discussion for clarity of

exposition. Each annotated specification element that appears on a data/control flow

diagram represents a specification element that cannot be further decomposed. For

example, each terminator on the context diagram cannot be decomposed, and thus the

458

terminators exist as part of the flattened hierarchy seen by CODA. The same is true for

the directed arcs flowing to and from the terminators. Contrast these with the data

transformation, Automobile Cruise Control and Monitoring, in the context diagram. This

data transformation is not annotated because it can be decomposed on additional

diagrams.

B.1 Analyzing the Specification

The data/control flow diagram for this case study consists of 58 nodes (33

transformations, 12 terminators, and 13 data stores) and 112 arcs (69 data flows and 43

event/control flows). The designer invokes CODA for assistance in analyzing the

data/control flow diagram and then in generating a concurrent design.

B.1.1 Classifying the Specification

Classifying the specification requires a dialog between CODA and the designer;

however, CODA can make most classification decisions without consulting the designer.

In this case study, only two consultations are necessary. First, the designer is asked if all

terminators in the specification are devices. The designer indicates that all terminators

are devices. Second, during the latter stages of classification, CODA discovers six data

transformations that appear to be synchronous functions. Knowing the designer to be

experienced, CODA presents each of these tentative classifications to the designer for

confirmation. The designer confirms that the data transformations, Initialize MPH,

Determine Speed, Initialize MPG, Initialize Oil Filter, Initialize Air Filter, and Initialize

Major Service, do represent synchronous functions.

459

B.1.2 Eliciting Additional Information

Since CODA determined new semantic identities for specification elements in the

data/control flow diagram, CODA checks each specification element to determine if

additional information must be supplied by the designer. In this case study, sixteen event

flows represent timers. CODA forces the designer to provide a positive period for each

timer. The designer takes the periods from the textual description for the automobile

cruise control and monitoring system. CODA also finds two system inputs from

asynchronous devices, the cruise control lever and the shaft. CODA requires the designer

to provide a value for a maximum rate at which these inputs are expected to arrive.

CODA discovers that no exclusion groups exist in the specification, and so, offers

the designer a chance to specify exclusion groups. The designer, after reading the textual

specification and manually analyzing the state-transition diagram, shown in Figure 35,

associated with Cruise Control, determines that Maintain Speed is enabled only in state

Cruising, Increase Speed is enabled only in state Accelerating, and Resume Cruising is

enabled only in state Resuming. The designer concludes that none of the controlled data

transformations execute simultaneously; thus, the designer specifies an exclusion group

that includes all three of the data transformations. This specification addendum helps

CODA identify instances where candidate tasks can be combined based upon mutual

exclusion.

Next, CODA determines that no aggregation groups nor locked-state events exist

within the specification and then offers the designer an opportunity to add these addenda.

460

461

Figure 35. State-T
ransition D

iagram
 for C

ruise C
ontrol

Initial Idle

Cruising
Off

Accelerating

Resuming Cruising

Accel (Brake Off)

Enable Increase Speed

Engine On
Trigger Clear Desired Speed

Engine Off

Engine Off

Disable Increase Speed
Engine Off

Off

Disable
Maintain
Speed

Brake Pressed
Disable Maintain

Speed

Engine Off

Disable Maintain
Speed

Accel (Brake Off)
Enable Increase Speed

Brake Pressed
Disable Increase Speed

Trigger Select Desired Speed

Resume
(Brake Off)

Enable
Resume
Cruising

Brake Pressed
Disable Resume Cruising

Off
Disable Resume Cruising

Off
Disable Resume Cruising

Reached Cruising
Disable Resume Cruising
Enable Maintain Speed

Accel

Accel

Disable Resume Cruising
Enable Increase Speed

Disable Maintain Speed
Enable Increase Speed Cruise

Disable Increase Speed
Trigger Select Desired Speed

Enable Maintain Speed

In this case study, the designer provides no aggregation groups and no locked-state

events. Finally, CODA asks the designer if the cardinality of any nodes should be

altered. The designer decides not to change any cardinalities.

B.1.3 Checking Classifications and Axioms

The designer next asks that CODA check the classification and axioms for each

specification element. CODA finds that the specification is classified completely and that

all axioms are satisfied. To better understand specification analysis for the automobile

cruise control and monitoring system, the annotated data/control flow diagrams are

presented in Figures 36 through 44.

B.1.4 Annotated Data/Control Flow Diagrams

Figure 36 shows that the application divides into two subsystems: an automobile

cruise control subsystem and an automobile monitoring subsystem. (Refer back to Table

31 to review the symbols used to annotate the data/control flow diagrams.) The directed

arcs flowing between the system and its terminators are allocated among these two

subsystems. The interface between the subsystems consists of a data flow, Cumulative

Distance, from the cruise control subsystem to the monitoring subsystem. CODA

classifies Cumulative Distance as a Retrieve, indicating that this data flow originates at a

data store within the cruise control subsystem. Since neither data transformation

representing a subsystem is annotated, additional decomposition is required.

Figure 37 shows the decomposition of the automobile cruise control subsystem

into three parts: Automobile Control (1.1), Distance and Speed Measurement (1.2), and

462

463

Automobile
Cruise
Control

1

Automobile
Monitoring

2

Cumulative
Distance

[Retrieve =]

Shaft
Interrupt

[Interrupt =]

Brake
Input

[Input =]

Engine
Input

[Input =]

Cruise
Control
Input

[Input =]
Calibration

Input
[Input =]

Time
[Input =]

Throttle
Position

[Output =]

Mileage
Display

Data
[Output =]

Fuel
Amount
[Input =]

Mileage
Reset
Input

[Input =]

Maintenance
Display

Data
[Output =]

Maintenance
Reset
Input

[Input =]
Time

[Input =]

Lever
Interrupt

[Interrupt =]

Figure 36. Subsystem
 D

ecom
position of A

utom
obile C

ruise C
ontrol and M

onitoring

Calibration (1.3). At this level of decomposition, system inputs and outputs are allocated

more finely; for example, the Automobile Control data transformation receives four

inputs, Brake Input, Engine Input, Cruise Control Input, and Lever Interrupt, and

generates one output, Throttle Position. This level of decomposition also reveals that the

Cumulative Distance data flow originates within the Distance and Speed Measurement

data transformation. Three new data flows also appear at this level of decomposition.

CODA classifies each of these new data flows, Current Speed, Calibration Constant, and

Shaft Rotation Count, as a Retrieve. This indicates that each of these data flows

originates at a data store. None of the data transformations shown in Figure 37 is

annotated, so each can be decomposed further.

Figure 38 decomposes Automobile Control into five data transformations. CODA

classifies Brake and Engine as Periodic Device Input Objects, and classifies Throttle as a

Periodic Device Output Object. Each of these data transformations receives an event

flow, Brake Sensor Timer, Engine Sensor Timer, and Throttle Output Timer,

respectively, that CODA classifies as a Timer. The period for each timer, 1/10 second in

each case, is elicited from the designer. CODA classifies Cruise Control Lever as an

Asynchronous Device Input Object. Cruise Control Lever receives the event flow, Lever

Interrupt, from the terminator, Four-Position Lever. A data flow, Cruise Control Input,

arrives at a maximum rate, elicited from the designer. Figure 38 reveals five event flows

and one data flow that do not appear at higher levels in the decomposition hierarchy.

Speed Control receives two event flows, Brake Pressed and Brake Released, from Brake

464

465

Automobile
Control

1.1

Distance and
Speed

Measurement
1.2

Calibration
1.3

Engine
Input

[Input =]

Brake
Input

[Input =]

Cruise
Control
Input

[Input =]

Lever
Interrupt

[Interrupt =]

Current
Speed

[Retrieve =]

Throttle
Position

[Output =]

Cumulative
Distance

[Retrieve =]

Time
[Input =]

Shaft
Interrupt

[Interrupt =]

Calibration
Constant

[Retrieve =]

Calibration
Input

[Input =]

Shaft
Rotation
Count

[Retrieve =]

Figure 37. D
ecom

position of the A
utom

obile C
ruise C

ontrol Subsystem

466

Brake
1.1.3

[Periodic Device
Input Object =]

Cruise
Control
Lever
1.1.4

[Asynchronous
Device Input

 Object =]

Speed
Control
1.1.1

Engine
1.1.2

[Periodic Device
Input Object =]

Throttle
1.1.5

[Periodic Device
Output Object =]

Brake
Input

[Input =]

Cruise
Control
Input

[Input =]
[Max. Rate .5 per sec. *]

Lever
Interrupt

[Interrupt =]

Brake
Sensor
Timer

[Timer =]
[Period .1 secs. *]

Engine
Input

[Input =]

Engine
Sensor
Timer

[Timer =]
[Period .1 secs. *]

Throttle
Position

[Output =]

Throttle
Output
Timer

[Timer =]
[Period .1 secs. *]

Current
Speed

[Retrieve =]

Engine On
[Signal =]

Engine Off
[Signal =]

Brake
Released
[Signal =]

Brake
Pressed
[Signal =]

Cruise
Control

Requests
Throttle Value
[Stimulus =]

Figure 38. D
ecom

position of A
utom

obile C
ontrol

and two, Engine On and Engine Off, from Engine. CODA classifies each of these event

flows as a Signal. The fifth new event flow, Cruise Control Requests, originating from

Cruise Control Lever, is not annotated in Figure 38 because the event flow is decomposed

on a subsequent diagram. The data flow, Throttle Value, received by Throttle is

classified by CODA as a Stimulus. One data transformation, Speed Control, is not

annotated because it can be decomposed further.

Speed Control is decomposed, as shown in Figure 39, into one control

transformation, five data transformations, and a data store. In addition, the event flow

named Cruise Control Requests, is decomposed into four individual event flows, Accel,

Cruise, Resume, and Off. CODA classifies each of these event flows as a Signal. CODA

also classifies the control transformation, Cruise Control, as a Control Object. Two data

transformations, Select Desired Speed and Clear Desired Speed, are classified by CODA

as Triggered Synchronous Functions. CODA classifies each of the three remaining data

transformations, Maintain Speed, Resume Cruising, and Increase Speed, as an Enabled

Periodic Function. The data store, Desired Speed, can be represented directly with the

specification meta-model; thus, no classification is required. Twelve new event flows are

revealed at this level of decomposition. CODA classifies two event flows as Triggers,

three event flows as Enables, three event flows as Disables, one event flow, Reached

Cruising, as a Signal, and three event flows, Speed Timer, Resume Timer, and Increase

Timer, as Timers. CODA elicits the period associated with each Timer. Four new data

flows are revealed at this level of decomposition. CODA classifies two of these as Stores

467

468

Cruise
Control
1.1.1.1
[Control
Object =]

Select
Desired Speed

1.1.1.2
[Triggered

Synchronous
Function =]

Clear
Desired
Speed
1.1.1.3

[Triggered
Synchronous
Function =]

Maintain
Speed
1.1.1.4

[Enabled Periodic
Function =]

Resume
Cruising
1.1.1.5

[Enabled Periodic
Function =]

Increase
Speed
1.1.1.6

[Enabled Periodic
Function =]

Desired Speed
[Data Store #]

Trigger
[Trigger =]

Trigger
[Trigger =]

Enable
[Enable =]

Disable
[Disable =]

Enable
[Enable =]

Enable
[Enable =]

Disable
[Disable =]

Disable
[Disable =]

Current
Speed

[Retrieve =]

[Store =]

[Store =]

[Retrieve =]

Current
Speed

[Retrieve =]

Throttle
Value

[Stimulus =]

Speed Timer
[Timer =]

[Period .2 secs. *]

Reached Cruising
[Signal =]

[Retrieve =]

Throttle
Value

[Stimulus =]

Current
Speed

[Retrieve =]

Resume Timer
[Timer =]

[Period .25 secs. *]

Throttle
Value

[Stimulus =]

Increase Timer
[Timer =]

[Period .3 secs. *]

Brake
Released
[Signal =]

Brake
Pressed
[Signal =]Engine

Off
[Signal =]

Engine
On

[Signal =]

Cruise
Control

Requests

Accel
[Signal =]

Cruise
[Signal =]

Off
[Signal =]

Resume
[Signal =]

Figure 39. Decomposition of Speed Control

to a data store, Desired Speed, and the other two as Retrieves from Desired Speed.

Recall from Figure 37 that the data transformation named Distance and Speed

Measurement can be further decomposed. This decomposition, shown in Figure 40,

includes three data transformations, Shaft, Determine Distance, and Determine Speed,

and five data stores, Current Speed, Shaft Rotation Count, Last Distance, Cumulative

Distance, and Last Time. CODA classifies Shaft as an Asynchronous Device Input

Object and elicits the maximum rate of arrival for the Shaft Interrupt event flow. CODA

classifies the new event flow, Distance Timer, as a Timer, elicits the period of 1/10

second for this Timer, and classifies Determine Distance as a Periodic Function. CODA

classifies as an Update each of the two, two-way arcs that connect a data transformation

to a data store. Each of the three directed arcs flowing to a data store is classified as a

Store, while each directed arc flowing from a data store is classified as a Retrieve. The

newly revealed data flow, Incremental Distance, is classified by CODA as a Stimulus.

The remaining data transformation, Determine Speed, is classified tentatively as a

Synchronous Function and the designer is asked to confirm or override that classification.

The designer confirms the classification. The data flow named Time Request is classified

by CODA as a Stimulus and the data flow Current Time is classified as a Response.

Another data transformation, Calibration, from Figure 37 can be decomposed

further, as shown in Figure 41. In the same way as described for earlier figures, CODA

makes the appropriate classifications for the specification elements on this diagram. This

completes the decomposition of the Automobile Cruise Control subsystem.

469

470

Shaft
1.2.1

[Asynchronous
Device Input

Object =]

Determine
Speed
1.2.3

[Synchronous
Function ?]

Determine
Distance

1.2.2
[Periodic

Function =]

Shaft Rotation
Count

[Data Store #]

Last Distance
[Data Store #]

Cumulative
Distance

[Data Store #]

Last Time
[Data Store #]

Current Speed
[Data Store #]

Shaft
Interrupt

[Interrupt =]
[Max. Rate 100,000

per sec. *]

[Update =]

Distance
Timer

[Timer =]
[Period .1 secs. *]

[Store =]

[Retrieve =]

[Store =][Retrieve =]

Incremental
Distance

[Stimulus =]

Calibration
Constant

[Retrieve =]

[Update =][Store =]

[Retrieve =]
[Retrieve =]

Time
Request

[Stimulus =]

Current
Time

[Response =]

Figure 40. Decomposition of Distance and Speed Measurement

The Automobile Monitoring subsystem is decomposed in a similar fashion,

beginning with Figure 42. The subsystem is divided into two components, Average

Mileage and Maintenance, each represented by a data transformation that can be further

decomposed. The inputs and outputs for the subsystem are divided between these two

data transformations and the data flow, Cumulative Distance, from the Automobile

Cruise Control Subsystem, is provided to both data transformations. Two new event

flows, Mileage Timer Events and Maintenance Timer Events, are revealed at this level of

decomposition. Each of these event flows can be further decomposed.

The decomposition for Average Mileage is illustrated in Figure 43. CODA makes

the following classifications for data transformations: Clock and Gas Tank are Passive

Device Input Objects; Mileage Display is a Passive Device Output Object; Mileage Reset

Buttons becomes a Periodic Device Input Object; Compute Average MPH and Compute

Average MPG are Periodic Functions. The two remaining data transformations, Initialize

MPH and Initialize MPG, are tentatively classified as Synchronous Functions and the

designer is asked to confirm or override this classification. The designer confirms the

classifications. The new event and data flows revealed in this decomposition are

classified by CODA. CODA also elicits periods from the designer for each event flow

identified as a Timer.

The final portion of the data/control flow diagram, shown in Figure 44,

decomposes the Maintenance data transformation from Figure 42. CODA assigns the

following classifications to data transformations in Figure 44: Maintenance Reset

471

472

Calibration
Buttons
1.3.1

[Periodic Device
Input Object =]

Calibration
Control
1.3.2

[Control
Object =]

Record
Calibration Start

1.3.3
[Triggered

Synchronous
Function =]

Compute
Calibration
Constant

1.3.4
[Triggered

Synchronous
Function =]

Calibration
Start Count

[Data Store #]

Calibration Constant
[Data Store #]

Calibration
Input

[Input =]

Button Poll
Timer

[Timer =]
[Period .5 secs *]

Calibration
Start

[Signal =]

Calibration
Stop

[Signal =]

Trigger
[Trigger =]

Trigger
[Trigger =]

[Store =]

[Retrieve =]

[Store =]
[Retrieve =]

Shaft Rotation
Count

[Retrieve =]

Shaft Rotation
Count

[Retrieve =]

Figure 41. D
ecom

position of C
alibration

473

Average
Mileage

2.1

Maintenance
2.2

Fuel
Amount
[Input =]

Mileage
Reset
Input

[Input =]

Mileage
Display Data
[Output =]

Mileage
Timer
Events

Time
[Input =]

Maintenance
Reset Input

[Input =]

Maintenance
Display Data
[Output =]

Maintenance
Timer
Events

Cumulative
Distance

[Retrieve =] [Retrieve =]

Figure 42. D
ecom

position of the A
utom

obile M
onitoring Subsystem

474

Clock
2.1.8

[Passive Device
Input Object =]

Initialize MPH
2.1.2

[Synchronous
Function ?]

Mileage
Reset Buttons

2.1.1
[Periodic Device
Input Object =]

Initialize MPG
2.1.3

[Synchronous
Function ?]

Compute
Average

MPH
2.1.4

[Periodic
Function =]

Compute
Average

MPG
2.1.5

[Periodic
Function =]

Mileage Display
2.1.7

[Passive Device
Output Object =]

Initial Distance
and Time

[Data Store #]

Initial Distance
and Fuel Level
[Data Store #]

Time
Request

[Stimulus =]

Current
Time

[Response =]

Time
Request

[Stimulus=]

Current
Time

[Response =]

Time
[Input =]

Time
Request

[Stimulus =]
Current
Time

[Response =]

MPH Timer
[Timer =]

[Period 1 secs. *]

[Retrieve =]

Cumulative
Distance

[Retrieve =]

Average MPH
[Stimulus =]

[Store =]

MPH Reset
[Signal =]

Mileage Reset
Input

[Input =]

Button Poll
Timer

[Timer =]
[Period .5 secs. *]

MPG Reset
[Signal =]

Cumulative
Distance

[Retrieve =]

Cumulative
Distance

[Retrieve =]

Cumulative
Distance

[Retrieve =]

[Store =]

[Retrieve =]

Gas Tank
2.1.6

[Passive Device
Input Object =]

Fuel
Amount
[Input =]

Fuel
Request

[Stimulus =]

Fuel
Level

[Response =]

MPG
Timer

[Timer =]
[Period 1 secs. *]

Average MPG
[Stimulus =]

Fuel
Request

[Stimulus =]

Fuel
Level

[Response =]

Mileage
Display Data
[Output =]

Figure 43. Decomposition of Average Mileage

Buttons becomes a Periodic Device Input Object; Maintenance Display becomes a

Passive Device Output Object; Check Oil Filter Maintenance, Check Air Filter

Maintenance, and Check Major Service Maintenance each become a Periodic Function.

CODA makes tentative classifications for the following Synchronous Functions:

Initialize Oil Filter, Initialize Air Filter, and Initialize Major Service. The designer

confirms these classifications. The newly revealed event and data flows are classified by

CODA and periods are elicited for each event flow classified as a Timer.

B.2 Generating the Design

After analyzing the data/control flow diagram, the designer decides to generate a

concurrent design, beginning with task structuring. First, the designer must load a target

environment description. For this case study, the designer chooses a DEFAULT target

environment description, including the following characteristics of note: a maximum of

two inter-task signals, a task inversion threshold of eight, support for message queues,

and no support for priority queues. The designer then asks CODA to structure tasks for

the design.

475

476

Maintenance
Reset Buttons

2.2.1
[Periodic Device
Input Object =]

Initialize Oil
Filer
2.2.2

[Synchronous
Function ?]

Initialize Air
Filter
2.2.3

[Synchronous
Function ?]

Initialize Major
Service
2.2.4

[Synchronous
Function ?]

Check Oil
Filter Maintenance

2.2.5
[Periodic

Function =]

Check Air
Filter Maintenance

2.2.6
[Periodic

Function =]

Check Major
Service

 Maintenance
2.2.7

[Periodic
Function =]

Maintenance
Display
2.2.8

[Passive Device
Output Object =]

Miles at Last Oil
Filter Maintenance

[Data Store #]

Miles at Last Air
Filter Maintenance

[Data Store #]

Miles at Last
Major Service
[Data Store #]

Maintenance
Reset Input

[Input =]

Button Poll
Timer

[Timer =]
[Period .5 secs. *]

Oil Filer
Reset

[Signal =]

Cumulative
Distance

[Retrieve =]

[Store =]

[Retrieve =] Cumulative
Distance

[Retrieve =]

Oil Filter
Timer

[Timer =]
[Period 2 secs. *]

Oil Filter Status
[Stimulus =]

Maintenance
Display Data

[Output =]

Air Filter
Timer

[Timer =]
[Period 2 secs. *]

Airl Filter Status
[Stimulus =]

Cumulative
Distance

[Retrieve =]

[Retrieve =]

[Store =]

Cumulative
Distance

[Retrieve =]

Air Filer
Reset

[Signal =]

Major Service
Reset

[Signal =]

Cumulative
Distance

[Retrieve =]

[Store =]

[Retrieve =] Cumulative
Distance

[Retrieve =]

Major Service
Timer

[Timer =]
[Period 2 secs.

Majpr Service Status
[Stimulus =]

Figure 44. Decomposition of Maintenance

B.2.1 Structuring Tasks

 For this case study, CODA makes most task structuring decisions without

consulting the designer; however, since the designer is experienced, CODA does consult

concerning one possible decision to merge two tasks. The following discussion reflects

the decision-making processes used by CODA to structure tasks.

B.2.1.1 Identifying Candidate Tasks

CODA begins by allocating candidate tasks from each of three transformations,

Increase Speed, Maintain Speed, and Resume Cruising, based on a CODARTS criterion

for identifying controlled, periodic internal tasks. Next, CODA allocates a task from each

of six transformations, Determine Distance, Compute Average MPH, Compute Average

MPG, Check Oil Filter Maintenance, Check Air Filter Maintenance, and Check Major

Service Maintenance, based on a CODARTS criterion for identifying periodic internal

tasks. CODA allocates two more tasks from among internal transformations, Cruise

Control and Control Calibration, based on the CODARTS criterion for identifying control

tasks. CODA’s remaining allocation of candidate tasks comes from device interface

objects. CODA allocates a task from each of six device interface objects, Brake, Engine,

Throttle, Mileage Reset Buttons, Maintenance Reset Buttons, and Calibration Buttons,

based on the CODARTS criterion for identifying periodic input/output tasks and allocates

a task from each of two device interface objects, Cruise Control Lever and Shaft, based

on the CODARTS criterion for identifying asynchronous input/output tasks. Table 32

shows CODA’s candidate tasks at the end of this decision-making process.

477

Table 32. Candidate Tasks Allocated by CODA

Candidate Task Transformation Structuring Criterion

Task 1 Increase Speed Controlled Periodic Internal Task

Task 2 Maintain Speed Controlled Periodic Internal Task

Task 3 Resume Speed Controlled Periodic Internal Task

Task 4 Determine Distance Periodic Internal Task

Task 5 Compute Average MPH Periodic Internal Task

Task 6 Compute Average MPG Periodic Internal Task

Task 7 Check Air Filter Maintenance Periodic Internal Task

Task 8 Check Oil Filter Maintenance Periodic Internal Task

Task 9 Check Major Service
 Maintenance

Periodic Internal Task

Task 10 Cruise Control Control Task

Task 11 Control Calibration Control Task

Task 12 Brake Periodic Input/Output Task

Task 13 Engine Periodic Input/Output Task

Task 14 Throttle Periodic Input/Output Task

Task 15 Calibration Buttons Periodic Input/Output Task

Task 16 Maintenance Reset Buttons Periodic Input/Output Task

Task 17 Mileage Reset Buttons Periodic Input/Output Task

Task 18 Cruise Control Lever Asynchronous Input/Output Task

Task 19 Shaft Asynchronous Input/Output Task

478

B.2.1.2 Allocating Remaining Transformations

Next, CODA examines the remaining, unallocated transformations, in an effort to

allocate them to appropriate tasks based upon CODARTS criteria for sequential and

control cohesion or upon guidance elicited from the designer. In this case, CODA needed

no guidance from the designer. Table 33 shows the decisions made by CODA during this

decision-making process.

Table 33. Additional Transformations Allocated to Tasks by CODA

Candidate Task Transformations Added Cohesion Criterion

Task 4 Determine Speed
Clock

Sequential Cohesion
Sequential Cohesion

Task 5 Clock
Mileage Display

Sequential Cohesion
Sequential Cohesion

Task 6 Gas Tank
Mileage Display

Sequential Cohesion
Sequential Cohesion

Task 7 Maintenance Display Sequential Cohesion

Task 8 Maintenance Display Sequential Cohesion

Task 9 Maintenance Dispaly Sequential Cohesion

Task 10 Select Desired Speed
Clear Desired Speed

Control Cohesion
Control Cohesion

Task 11 Record Calibration Start
Compute Calibration Constant

Control Cohesion
Control Cohesion

Task 16 Initialize Oil Filter
Initialize Air Filter
Initialize Major Service

Sequential Cohesion
Sequential Cohesion
Sequential Cohesion

Task 17 Initialize MPG
Initialize MPG
Clock
Gas Tank

Sequential Cohesion
Sequential Cohesion
Sequential Cohesion
Sequential Cohesion

479

B.2.1.3 Considering Task Mergers

During the next decision-making process, CODA examines the candidate tasks in

an effort to combine tasks, where feasible. CODA makes most of the decisions, shown

in Table 34, without consulting the designer.

Table 34. Tasks Combined by CODA

Tasks Combined Cohesion Criterion

Task 1
Task 2
Task 3

Mutual Exclusion

Task 5
Task 6

Temporal and Functional Cohesion

Task 7
Task 8
Task 9

Temporal and Functional Cohesion

Task 11
Task 15

Sequential Cohesion

Task 12
Task 13

Temporal and Functional Cohesion

Task 16
Task 17

Temporal and Functional Cohesion

CODA combines three tasks (1-3) based on mutual exclusion because the

constituent transformations, Increase Speed, Maintain Speed, and Resume Speed, reside

in the same exclusion group. CODA combines Task 5 and Task 6, based on Compute

Average MPH and Compute Average MPG, respectively, because both periodic internal

480

tasks operate with the same periodicity, one second. Similarly, CODA combines Task 7,

Task 8, and Task 9, based on Check Air Filter Maintenance, Check Oil Filter

Maintenance, and Check Major Service Maintenance, respectively, because these

periodic internal tasks operate with identical periods, two seconds. CODA combines

Task 11 and Task 15, based upon Control Calibration and Calibration Buttons,

respectively, because Task 11 must always receive input from Task 15 before executing

and Task 11 interacts with no other tasks. CODA combines the Brake and Engine tasks,

Task 12 and Task 13, respectively, because these periodic input tasks operate with

identical periods, 1/10 of a second. Similarly, CODA merges the Maintenance Reset

Buttons and Mileage Reset Buttons tasks, Task 16 and Task 17, respectively, because

these periodic input tasks operate with identical periods, 1/2 of a second.

Two tasks in the evolving design might be combined because their periods are

multiples of one another, are within an order of magnitude, and are the closest such

periods existing in the evolving design. CODA cannot make a decision because

additional, application-specific, factors must be considered. After explaining this to the

designer, CODA offers an opportunity to review the structure of the tasks involved in the

decision. For this case study, the designer asks to review the tasks. CODA lists each

task, along with the transformations allocated to each task; see Table 35. CODA then

asks the designer whether to combine these tasks. In this case, the designer decides not to

combine the tasks because they do not exhibit enough functional similarity.

481

Table 35. A Candidate Task Merger

Task Transformations

Previously Combined Tasks 5 and 6
 (1 second period)

Compute Average MPG
Compute Average MPH
Gas Tank
Mileage Display
Clock

Previously Combined Tasks 7, 8, and 9
 (2 second period)

Check Major Service Maintenance
Check Air Filter Maintenance
Check Oil Filter Maintenance
Maintenance Display

B.2.1.4 Completing Task Structuring

Next, CODA considers whether the design requires any resource monitor tasks.

In this case study, no resource monitor tasks are needed. At this point, task structuring is

essentially complete; however, since CODA generates names for each task it creates, the

designer is offered an opportunity to review the task structure and to assign new names to

any task. Table 36 gives the results of the task structuring for this case study, including

the new names assigned to each task, the transformations allocated to each task, and the

structuring criteria used to make the allocations.

B.2.2 Structuring Modules

After structuring tasks, the designer might continue building the design by either

defining task interfaces or structuring modules. In this case study, the designer decides to

 structure modules first. CODA makes most of the module structuring decisions

482

Table 36. Summary of CODA’s Task Structuring Decisions

Task Transformations Structuring Criterion

Determine Speed &
 Distance

Determine Speed
Determine Distance
Clock

Periodic Internal Task
Sequential Cohesion

Control Cruising
Cruise Control
Select Desired Speed
Clear Desired Speed

Control Task
Control Cohesion

Adjust Throttle Throttle Periodic Device I/O Task

Monitor Shaft Rotation Shaft Asynchronous Device I/O

Monitor Cruise Control
 Lever

Cruise Control Lever Asynchronous Device I/O

Control Auto Speed
Increase Speed
Maintain Speed
Resume Cruising

Controlled Periodic Internal
 Tasks
Mutual Exclusion

Perform Calibration

Control Calibration
Calibration Buttons
Compute Calibration
 Constant
Record Calibration Start

Control Task
Periodic Device I/O Task
Sequential Cohesion
Control Cohesion

Monitor Auto Sensors
Brake
Engine

Periodic Device I/O Tasks
Temporal & Functional
 Cohesion

Monitor Reset Buttons

Mileage Reset Buttons
Maintenance Reset Buttons
Initialize MPH
Clock
Initialize MPG
Gas Tank
Initialize Oil Filter
Initialize Air Filter
Initialize Major Service

Periodic Device I/O Tasks
Temporal & Functional
 Cohesion
Sequential Cohesion

483

Table 36. Summary of CODA’s Task Structuring Decisions (cont.)

Task Transformations Structuring Criterion

Check Maintenance Need

Check Major Service
 Maintenance
Check Air Filter
 Maintenance
Check Oil Filter
 Maintenance
Maintenance Display

Periodic Internal Tasks
Temporal & Functional
 Cohesion
Sequential Cohesion

Computer Average Mileage

Compute Average MPG
Compute Average MPH
Gas Tank
Mileage Display
Clock

Periodic Internal Tasks
Temporal & Functional
 Cohesion
Sequential Cohesion

without consulting the designer; however, since the designer is experienced, CODA

consults in a few cases where an experienced designer might improve upon the decisions.

B.2.2.1 Identify Candidate Modules

CODA begins module structuring by considering which transformations and data

stores should form the basis for information hiding modules. CODA finds three

transformations to combine into a single State-Dependent Function-Driver Module,

eleven data structures from which to allocate Data-Abstraction Modules, two

transformations that form the basis for State-Transition Modules, and twelve

transformations that lead to Device-Interface Modules. Table 37 reflects these decisions.

484

Table 37. Candidate Modules Allocated by CODA

Candidate Module Transformation/Data Store Structuring Criterion

FDM 1
Increase Speed
Maintain Speed
Resume Cruising

State-Dependent,
 Function-Driver
Module

DAM 1 Desired Speed Data-Abstraction Module

DAM 2 Shaft Rotation Count Data-Abstraction Module

DAM 3 Current Speed Data-Abstraction Module

DAM 4 Cumulative Distance Data-Abstraction Module

DAM 5 Initial Distance & Time Data-Abstraction Module

DAM 6 Initial Distance & Fuel Level Data-Abstraction Module

DAM 7 Miles at Last Oil Filter
Maintenance

Data-Abstraction Module

DAM 8 Miles at Last Air Filter
Maintenance

Data-Abstraction Module

DAM 9 Miles at Last Major Service Data-Abstraction Module

DAM 10 Calibration Start Count Data-Abstraction Module

DAM 11 Calibration Constant Data-Abstraction Module

STM 1 Cruise Control State-Transition Module

STM 2 Calibration Control State-Transition Module

DIM 1 Maintenance Display Device-Interface Module

DIM 2 Mileage Display Device-Interface Module

DIM 3 Throttle Device-Interface Module

DIM 4 Clock Device-Interface Module

DIM 5 Gas Tank Device-Interface Module

DIM 6 Shaft Device-Interface Module

DIM 7 Cruise Control Lever Device-Interface Module

DIM 8 Calibration Buttons Device-Interface Module

DIM 9 Maintenance Reset Buttons Device-Interface Module

DIM 10 Mileage Reset Buttons Device-Interface Module

DIM 11 Brake Device-Interface Module

DIM 12 Engine Device-Interface Module

485

B.2.2.2 Allocating Functions to DAMs

Next, CODA attempts to allocate any unallocated functions to the candidate

Data-Abstraction Modules, or DAMs, identified in the previous decision-making process.

For this case study, sixteen functions can be allocated using CODARTS criteria for

structuring modules. Table 38 shows CODA’s decisions.

Table 38. CODA’s Decisions to Allocate Functions to DAMs

Candidate Module Transformations Added Structuring Criterion

DAM 1 Clear Desired Speed
Select Desired Speed

DAM Update Operation
DAM Update Operation

DAM 3 Determine Speed DAM Update Operation

DAM 4 Determine Distance DAM Update Operation

DAM 5 Initialize MPH
Compute Average MPH

DAM Update Operation
DAM Read Operation

DAM 6 Initialize MPG
Compute Averate MPG

DAM Update Operation
DAM Read Operation

DAM 7 Initialize Oil Filter
Check Oil Filter Maintenance

DAM Update Operation
DAM Read Operation

DAM 8 Initialize Air Filter
Check Air Filter Maintenance

DAM Update Operation
DAM Read Operation

DAM 9 Initiailize Major Service
Check Major Service
 Maintenance

DAM Update Operation
DAM Read Operation

DAM 10 Record Calibration Start DAM Update Operation

DAM 11 Compute Calibration Constant DAM Update Operation

486

B.2.2.3 Allocating Isolated Elements

Typically, CODA next considers allocating any transformations that remain

unallocated to some module; however, in this case study, all transformations are allocated

at this point, so CODA turns instead to examine the two data stores that remain

unallocated. First, CODA consults the designer to ensure that the isolated data stores,

Last Distance and Last Time, are used for local memory. With this additional

information the prototype knows how to allocate the data stores. CODA allocates one

data store, Last Distance, to DAM 4 and allocates the other, Last Time, to DAM 3.

Absent an experienced designer, CODA would have reached the same decisions, by

default, for these cases.

B.2.2.4 Considering Module Subsumption

Since the designer is experienced, CODA considers whether some of the

data-abstraction modules are candidates to be combined. In this case study, the prototype

finds that the module Cumulative Distance is the only module that reads from the module

Calibration Constant; thus, Calibration Constant is a candidate to be subsumed by

Cumulative Distance. The designer reviews the transformations and data stores allocated

to each module and decides not to merge the two because the two modules are too

dissimilar functionally. Next, the prototype finds that Calibration Constant is the only

module that reads from the module Start Calibration and, so, offers these as candidates to

487

be combined. After reviewing the components of each module, the designer decides to

combine them because the two exhibit a close functional relationship.

B.2.2.5 Completing Module Structuring

At this stage, the modules in the design are established and CODA considers the

operations, and associated parameters, required by each module. After mapping

transformations and arcs to module operations and parameters, CODA allows the

designer to review the module and operation structure and to assign new names. Table 39

provides a summary of CODA’s module structuring decisions for this case study.

Table 39. Summary of CODA’s Module Structuring Decisions

Module Transformation/Data Store Structuring Criterion

Control Auto Speed
Increase Speed
Maintain Speed
Resume Cruising

State-Dependent,
 Function Driver Module

Desired Speed
Desired Speed
Clear Desired Speed
Select Desired Speed

Data-abstraction Module
DAM Update Operation

Shaft Rotation Count Shaft Rotation Count Data-abstraction Module

Current Speed
Current Speed
Determine Speed
Last Time

Data-abstraction Module
DAM Update Operation
Local Memory

Distance
Cumulative Distance
Determine Distance
Last Distance

Data-abstraction Module
DAM Update Operation
Local Memory

MPH
Initial Distance & Time
Initialize MPH
Compute Average MPH

Data-abstraction Module
DAM Update Operation
DAM Read Operation

MPG
Initial Distance & Fuel Level
Initialize MPG
Compute Average MPG

Data-abstraction Module
DAM Update Operation
DAM Read Operation

488

Table 39. Summary of CODA’s Module Structuring Decisions (cont.)

Modules Transformation/Data Store Structuring Criterion

Oil Filter Maintenance
Miles at Last Oil Filter
 Maintenance
Initialize Oil Filter
Check Oil Filter Maintenance

Data-abstraction Module

DAM Update Operation
DAM Read Operation

Air Filter Maintenance
Miles at Last Air Filter
 Maintenance
Initialize Air Filter
Check Air Filter Maintenance

Data-abstraction Module

DAM Update Operation
DAM Read Operation

Major Service Maintenance
Miles at Last Major Service
Initialize Major Service
Check Major Service
 Maintenance

Data-abstraction Module
DAM Update Operation
DAM Read Operation

Cruise Control Cruise Control State-transition Module

Calibration Control Calibration Control State-transition Module

Maintenance Display Maintenance Display Device-interface Module

Mileage Display Mileage Display Device-interface Module

Throttle Throttle Device-interface Module

Clock Clock Device-interface Module

Gas Tank Gas Tank Device-interface Module

Shaft Shaft Device-interface Module

CC Lever Cruise Control Lever Device-interface Module

Calibration Buttons Calibration Buttons Device-interface Module

Maintenance Reset Buttons Maintenance Reset Buttons Device-interface Module

Mileage Reset Buttons Mileage Reset Buttons Device-interface Module

Brake Brake Device-interface Module

Engine Engine Device-interface Module

Calibration
Calibration Start Count
Calibration Constant
Record Calibration Start
Compute Calibration Constant

Data-abstration Module
DAM Update Operation
Multiple DAMs
 Combined By Designer

489

B.2.3 Integrating Tasks and Modules

Once task and module structuring are complete, the designer decides, for this case

study, to ask CODA to integrate these two views. CODA first determines the logical

placement of the twenty-five modules, relative to the eleven tasks. Device-interface

modules for unshared devices are placed within the tasks that access the associated

device; so, for example, the Brake module and the Engine module go inside the task

named Monitor Auto Sensors and the Mileage Display module is placed inside the task

named Compute Average Mileage. Modules accessed by a single task, such as Speed

Control, which is accessed only by the task Control Auto Speed, are placed within the

accessing task, while modules accessed by multiple tasks, such as Desired Speed, Current

Speed, Clock, Gas Tank, Calibration, Distance, and Shaft Rotation Count, are placed

outside any task.

After establishing module placement, CODA identifies cases where tasks invoke

operations within modules that reside outside any task. In each such case, CODA

establishes an Invokes relationship between the task and the operation. Additionally,

CODA creates an Accesses relationship between a task and each module that provides

operations invoked by that task. For example, the task named Determine Distance and

Speed accesses two modules: 1) Distance, invoking the operation Update, and 2) Current

Speed, invoking the operation Update.

Once the relationships between tasks and module are determined completely,

CODA examines possible connections between modules residing outside any task.

Where an operation in one such module invokes an operation in another such module,

490

CODA establishes a relationship stating that the invoking operation requires the invoked

operation. For each module that provides operations required by another module, CODA

creates a relationship indicating that the providing module serves the requiring module.

For example, in this case study, an operation, Select, of the module Desired Speed,

requires another operation, Read, provided by the module Current Speed. Current Speed,

then, serves Desired Speed.

B.2.4 Defining Task Interfaces

All that remains to complete the design is the definition of task interfaces. At the

designer’s request, CODA begins this process.

B.2.4.1 Allocating External Task Interfaces

First, CODA determines the external interfaces for each task. At this point,

CODA allocates data read and written by each task, determines timers and interrupts

received by each task, and identifies the set of data and event flows exchanged among

tasks. The details of these mappings are shown in Tables 40-44.

491

Table 40. CODA’s Allocation of Input Data Flows to Tasks

Task Input Data Flow

Compute Average Mileage Fuel Amount
Time of Day

Determine Speed and Distance Time of Day

Monitor Auto Sensors Brake Input
Engine Input

Monitor Cruise Control Lever Cruise Control Input

Monitor Reset Buttons Fuel Amount
Maintenance Reset Input
Mileage Reset Input
Time of Day

Perform Calibration Calibration Input

Table 41. CODA’s Allocation of Output Data Flows to Tasks

Task Output Data Flow

Adjust Throttle Throttle Position

Check Maintenance Need Maintenance Display Data

Compute Average Mileage Mileage Display Data

Table 42. CODA’s Allocation of Interrupts to Tasks

Task Interrupt

Monitor Cruise Control Lever Lever Interrupt

Monitor Shaft Rotation Shaft Interrupt

492

Table 43. CODA’s Allocation of Timers to Tasks

Task Timer

Adjust Throttle Throttle Output Timer

Check Maintenance Need
Air Filter Timer
Major Service Timer
Oil Filter Timer

Compute Average Mileage MPG Timer
MPH Timer

Control Auto Speed Increase Timer
Resume Timer
Speed Timer

Determine Speed and Distance Distance Timer

Monitor Auto Sensor Brake Sensor Timer
Engine Sensor Timer

Monitor Reset Buttons Button Poll Timer

Perform Calibration Button Poll Timer

Table 44. Inter-Task Exchanges Identified by CODA

Destination Task Source Task Internal Data/Event Flow

Adjust Throttle Control Auto Speed Throttle Value (3 instances)

Control Auto Speed Cruise Control
E/D Increase Speed
E/D Maintain Speed
E/D Resume Speed

Control Cruising

Control Auto Speed Reached Cruising

Monitor Cruise Control Lever
Accel
Cruise
Off
Resume

Monitor Auto Sensors Brake Pressed/Released
Engine On/Off

493

B.2.4.2 Allocating Control and Event Flows

Next, CODA considers how event flows between pairs of tasks might be

allocated. CODA allocates event flows from the Monitor Auto Sensors and Monitor

Cruise Control Lever tasks to queued messages. These events flow into a state-transition

diagram and, thus, none should be missed and their arrival order should be preserved. In

addition, the two input tasks that generate these events should not be delayed waiting for

the Control Cruising task to accept the events.

CODA maps all control flows from the Control Cruising task to the Control Auto

Speed task onto a single, tightly-coupled message. CODA makes this mapping because

the Enable and Disable signals are assumed to be transmitted during a state-transition,

and thus the sending task requires synchronization with the task receiving these control

flows.

CODA is less certain how to map the event, Reached Cruising, that flows from

the task Control Auto Speed to the task Control Cruising. In general, this decision

depends upon whether the sender of the event needs to synchronize with the receiver of

the event. CODA cannot determine if this is the case, and so, had the designer been

inexperienced, then CODA would make a default decision to allocate this event to a

queued message. For this case study, however, CODA consults the experienced designer.

CODA asks the designer whether synchronization is required for this event. In this case,

the designer says synchronization is not required, so CODA maps the event onto a

queued message.

494

B.2.4.3 Allocating Data Flows

After deciding how to map all the events that flow between tasks, CODA next

considers how to map all the data flows between pairs of tasks. In this case study, only

three data flows, all instances of Throttle Value, to the Throttle must be considered.

CODA, uncertain about the synchronization requirements for these data flows, consults

the experienced designer for additional information. The designer indicates that the

sender and receiver must rendezvous around these data flows; CODA then maps all three

data flows to a single, tightly-coupled message from the task Speed Control to the task

Adjust Throttle. Had an experienced designer been unavailable then, by default, CODA

would map these three data flows to a single, queued message.

B.2.4.4 Eliciting Message Priorities and Defining Queue Interfaces

Next, CODA recognizes that one task, Cruise Control, receives queued messages

from multiple source tasks. Since the designer is experienced, CODA offers the designer

an opportunity to assign varying priorities to these messages. In this case study, the

designer declines the offer. CODA then examines the facilities available in the intended

target environment and defines appropriate mechanisms for holding queued messages.

Since the target environment provides message queuing services and since tasks

exchange queued messages at a single priority, CODA allocates a first-in, first-out

message queue for each task that receives queued messages.

495

B.2.4.5 Completing Task-Interface Definition

After defining queue interfaces, CODA offers the designer a chance to review the

new design elements created during task-interface definition. In this case study, the

designer accepts the offer and commences the review. For each task, CODA displays

only the incoming interfaces, except that CODA displays each datum output with the task

that generates that output. This approach ensures that the designer reviews each element

only once.

B.2.5 The Completed Design

At this point, the design is complete. Configuring the design and evaluating the

performance of the design go beyond the scope of the prototype implemented for this

dissertation. CODA can, however, generate specifications and design histories for each

task and module in the design. In addition, CODA can check the design for completeness

against the elements from the data/control flow diagram, and also for consistency with

the design meta-model.

B.2.5.1 Creating the Software Architecture Diagram

When the designer requests that the design be written, CODA constructs a

specification and design history for each task and module. The design histories are too

long, and the task and module specifications too numerous, to include in this already long

exposition. Instead, Figure 45 reproduces one task behavior specification, for the task

Perform Calibration, and Figure 46 shows one module specification, for the module

Calibration. The designer can use the task and module specifications to create a

496

497

TASK: Perform_Calibration

A) TASK INTERFACE:
TASK INPUTS:
Event Inputs:
1) Timer_Expiration (Timer event) from Run-Time_System
 every 0.5 secs.
Data Inputs:
1) Calibration_Input from Calibration_Push_Buttons
TASK OUTPUTS:
MODULES ACCESSED:
1) Calibration
 Invokes Start
 Invokes Stop
MODULES CONTAINED:
1) Calibration_Buttons
2) Calibration_Control

B) TASK STRUCTURE:
Criteria: Periodic Device I/O Task
 Control Task
 Control Cohesion
 Sequential Cohesion

Transformations: 1.3.2 Calibration_Control
 1.3.1 Calibration_Buttons
 1.3.4 Compute_Calibration_Constant
 1.3.3 Record_Calibration_Start

C) TIMING CHARACTERISTICS:
Activation: Periodic - by timer every 0.5 secs.
Execution Time Ci:

D) CONFIGURATION INFORMATION:
Cardinality: 1
Priority: 1
Processor: 1

E) TASK EVENT SEQUENCING:

F) ERRORS DETECTED:

Figure 45. Task Behavior Specification for Perform Calibration

498

MODULE: Calibration

A) MODULE LINKAGES:

Accessing Tasks: Perform_Calibration

Modules Served: Distance

B) MODULE STRUCTURE:
Criteria: Data-Abstraction Module
 Update Operation Of A Data-Abstraction Module
 Multiple, Data-Abstraction Modules Combined by Designer

Transformations: 1.3.3 Record_Calibration_Start
 1.3.4 Compute_Calibration_Constant

Data Stores: Calibration_Start_Count
 Calibration_Constant

C) ASSUMPTIONS:
This Module Supports Shared Access By Multiple Tasks

D) OPERATIONS PROVIDED:
1) Read_Constant
 Output Parameter: Calibration_Constant
2) Start
 Operation Required: Shaft_Rotation_Count.Read
3) Stop
 Operation Required: Shaft_Rotation_Count.Read

Figure 46. Module Specification for Calibration

diagrammatic representation of the design. A two part figure, shown as Figures 47 and

48, gives such a representation of the concurrent design created for this case study. The

task and module specifications exhibited in Figure 45 and Figure 46 are used below to

show how a designer can map from the specifications to a diagram. The notation used in

Figures 47 and 48 is explained in Chapter 5 of this dissertation.

Figure 47 illustrates diagrammatically the concurrent design, as generated by

CODA, for the cruise control subsystem. The task behavior specification in Figure 45

applies to the Perform Calibration task, depicted in the upper portion of Figure 47, just to

the right of center. The module specification in Figure 46 applies to the Calibration

module, shown in Figure 47, just to the southeast of the Perform Calibration task. As

revealed in the task behavior specification, Perform Calibration receives a timer event,

Timer Expiration, and reads one input, Calibration Input. The task produces no direct

outputs. The task does, however, access the Calibration module, invoking two

operations, Start and Stop. The task also contains two modules, Calibration Control and

Calibration Buttons. This information is represented pictorially in Figure 47. The task

behavior specification includes additional information not shown on the diagram. For

example, the timer period is 1/2 second and the task is a periodic device-i/o task, formed

from four transformations based on three task-structuring criteria.

As revealed in the module specification, the Calibration module is accessed by

one task, Perform Calibration, which uses the two operations, Start and Stop, and serves

one module, Distance, which accesses the operation named Read Constant. This

499

500

S
e

le
ct

C
le

a
r

R
e

a
d

D
e

si
re

d
 S

p
e

e
d

B
ra

ke
E

n
g

in
e

M
o

n
ito

r
A

u
to

 S
e

n
so

rs

C
C

 L
e

ve
r

M
o

n
ito

r
C

ru
is

e
 C

o
n

tr
o

l L
e

ve
r

C
ru

is
e

 C
o

n
tr

o
l

E
ve

n
ts

B
ra

ke
 In

p
u

t

E
n

g
in

e
 In

p
u

t

T
im

e
r

E
xp

ir
a

tio
n

L
e

ve
r

In
te

rr
u

p
t

C
ru

is
e

 C
o

n
tr

o
l

In
p

u
t

A
u

to
 S

e
n

so
r

E
ve

n
t

C
C

 L
e

ve
r

E
ve

n
t

C
ru

is
e

C
o

n
tr

o
l

C
o

n
tr

o
l C

ru
is

in
g

S
p

e
e

d
C

o
n

tr
o

l

C
o

n
tr

o
l A

u
to

 S
p

e
e

d

S
p

e
e

d
C

o
m

m
a

n
d

A
d

ju
st

 T
h

ro
ttl

e
R

e
q

u
e

st

A
d

ju
st

 T
h

ro
ttl

e

T
h

ro
ttl

e
 P

o
si

tio
n

T
h

ro
ttl

e

T
im

e
r

E
xp

ir
a

tio
n

S
ta

rt

S
to

p

R
e

a
d

C
o

n
st

a
n

t

C
a

lib
ra

tio
n

R
e

a
d

U
p

d
a

te

S
h

a
ft

R
o

ta
tio

n
C

o
u

n
t

R
e

a
ch

e
d

C
ru

is
in

g

M
a

in
ta

in
 T

im
e

r
E

xp
ir

a
tio

n

R
e

su
m

e
 T

im
e

r
E

xp
ir

a
tio

n

In
cr

e
a

se
 T

im
e

r
E

xp
ir

a
tio

n

D
e

te
rm

in
e

D
is

ta
n

ce
a

n
d

S
p

e
e

d

T
im

e
r

E
xp

ir
a

tio
n

S
h

a
ft

M
o

n
ito

r
S

h
a

ft
R

o
ta

tio
n

S
h

a
ft

In
te

rr
u

p
t

C
a

lib
ra

tio
n

In
p

u
t

T
im

e
r

E
xp

ir
a

tio
n

P
e

rf
o

rm
 C

a
lib

ra
tio

n

C
a

lib
ra

tio
n

B
u

tto
n

s
C

a
lib

ra
tio

n
C

o
n

tr
o

l

C
u

rr
e

n
t S

p
e

e
d

R
e

a
d

U
p

d
a

te

C
lo

ck

R
e

a
d

C
u

rr
e

n
t

T
im

e

In
iti

a
liz

e

D
is

ta
n

ceR
e

a
d

U
p

d
a

te

T
im

e
 o

f D
a

y

Figure 47. Automobile Cruise Control and Monitoring System Design
(Part One of Two)

501

M
ile

a
g

e
R

e
se

t
B

u
tt

o
n

s

M
o

n
ito

r
R

e
se

t
B

u
tt

o
n

s

T
im

e
r

E
xp

ira
tio

n

M
ile

a
g

e
 R

e
se

t
In

p
u

t
M

a
in

te
n

a
n

ce
D

is
p

la
y

C
h

e
ck

 M
a

in
te

n
a

n
ce

 N
e

e
d

T
im

e
r

E
xp

ira
tio

n

M
a

in
te

n
a

n
ce

D
is

p
la

y
D

a
ta

M
ile

a
g

e
D

is
p

la
y

C
o

m
p

u
te

 A
ve

ra
g

e
 M

ile
a

g
e

T
im

e
r

E
xp

ira
tio

n

F
u

e
l A

m
o

u
n

t

M
a

in
te

n
a

n
ce

 R
e

se
t

In
p

u
t

T
im

e
 o

f
D

a
y

F
u

e
l A

m
o

u
n

t

M
a

in
te

n
a

n
ce

R
e

se
t

B
u

tt
o

n
s

O
il

F
ilt

e
r

M
a

in
te

n
a

n
ce

C
h

e
ck

S
ta

tu
s

In
iti

a
liz

e

M
a

jo
r

S
e

rv
ic

e
M

a
in

te
n

a
n

ce

C
h

e
ck

S
ta

tu
s

In
iti

a
liz

e

A
ir

F
ilt

e
r

M
a

in
te

n
a

n
ce

C
h

e
ck

S
ta

tu
s

In
iti

a
liz

e

M
P

H C
o

m
p

u
te

A
ve

ra
g

e

In
iti

a
liz

e

M
P

G C
o

m
p

u
te

A
ve

ra
g

e

In
iti

a
liz

e

D
is

ta
n

ce

R
e

a
d U

p
d

a
te

T
im

e
 o

f
D

a
y

M
ile

a
g

e
D

is
p

la
y

D
a

ta

G
a

s
T

a
n

k

R
e

a
d

F
u

e
l

L
e

ve
l

In
iti

a
liz

e

C
lo

ck

R
e

a
d

C
u

rr
e

n
t

T
im

e

In
iti

a
liz

e

Figure 48. Automobile Cruise Control and Monitoring System Design
(Part Two of Two)

information, and the fact that the module is accessible from multiple threads of control,

can be determined from reviewing the software architecture diagram, Figure 47. The

module specification includes information not shown in Figure 47. For example, the

module is formed from two data transformations and two data stores, based on three

module-structuring criteria. In addition, one operation, Read Constant, returns a

parameter, Calibration Constant.

The foregoing discussion should convince the reader that the contents of the

software architecture diagram can be derived from the task behavior specifications and

module specifications produced by CODA. In fact, the author derived Figures 47 and 48

using exactly that method.

Figure 48 depicts the software architecture for the monitoring subsystem. Two

modules, Clock and Distance, appear on both Figures 47 and 48. Each of these modules

is accessed by tasks from both subsystems. Replicating the modules on both figures

provides a convenient means of viewing the design.

B.2.5.2 Assessing the Design

The concurrent design depicted in Figures 47 and 48 is almost identical to the

design given by Gomaa for the automobile cruise control and monitoring system. [Gomaa93,

Chapter 22] Two main differences can be discerned. First, one module, Clock, that appears

in Figures 47 and 48 does not appear in Gomaa’s design because Gomaa assumes a clock

function is built into the operating environment. The time-of-day clock used in the

data/control flow diagrams depicted earlier in this appendix is represented as an external

502

device; thus, CODA allocates a module to interface to that device. A second, more

subtle, difference involves interactions between a task, Determine Distance and Speed,

and two modules, Distance and Current Speed. In Gomaa’s design, Determine Distance

and Speed calls the Update operation in the Distance module and then the Update

operation in the Current Speed module, just as shown in Figure 47. However, in Gomaa’s

solution, the Update operation in the Current Speed module invokes another operation,

Read Incremental Distance, in the Distance module to obtain some information needed to

compute the current speed. In the design generated by CODA, Determine Distance and

Speed first invokes the Update operation in the Distance module. The update operation

returns an output parameter, Incremental Distance, that is passed, by Determine Distance

and Speed, as an input parameter to the Update operation in the Current Speed module.

This difference between CODA’s design and Gomaa’s design results from the fact that

CODA adopts a single strategy for mapping calls from tasks to modules, whereas, Gomaa

uses a range of different strategies to perform these mappings.

B.3 Design Generated for a Novice Designer

To demonstrate design generation for a novice designer, CODA generates a

second design for the automobile cruise control and monitoring system. The starting

point for this design is the output from CODA’s specification analyzer. This means that

the input data/control flow diagram is identical to that used to generate the previous

design, that is, the specification is fully classified, the axioms are satisfied, the timer

values are identical, and the specification addenda are the same.

503

B.3.1 Generating the Design

In general, CODA moves through the same design-generation steps described

previously in section B.2; however, in cases where an experienced designer was

consulted, CODA now makes default decisions. The first such case occurs when CODA

considers task mergers. Previously, two internal periodic tasks, one with a period of one

second and another with a period of two seconds, were referred to the designer to

consider combining them based on temporal and functional cohesion. For a novice

designer, CODA simply refuses to consider such decisions; thus, by default, CODA does

not combine the tasks in question (refer back to Table 35). Since, for the previous design,

the experienced designer chose not to combine these tasks, CODA generates an identical

result in each case.

Two other relevant cases appear during module structuring. First, CODA

previously consulted the experienced designer regarding two isolated data stores, Last

Distance and Last Time (refer back to section B.2.2.3). For a novice designer, CODA

takes a default decision that these data stores provide local storage and then allocates

these data stores to existing modules. Since, for the previous design, the experienced

designer indicated that these data stores provide local storage, CODA generates an

identical result in each case. A different outcome occurs with regard to module

subsumption.

Previously, CODA consulted with the experienced designer regarding two cases

where data-abstraction modules might be combined (refer back to section B.2.2.4). When

504

only a novice designer is available, CODA refuses to consider such complex cases; thus,

by default, CODA does not combine modules. Since, for the previous design, an

experienced designer chose to combine two modules, CODA generates a different result

for the novice designer. This difference leads to other differences, as explained later,

regarding module placement and module calling sequences.

Only two other instances arise where CODA wishes to consult an experienced

designer. In one instance (refer back to section B.2.4.2), CODA desires to know the

synchronization requirements for an event flow, Reached Cruising. Since the designer is

a novice, CODA takes a default decision to map this event flow to a queued message.

This decision agrees with the guidance provided by the designer in the previous design.

In the other instance (refer back to section B.2.4.3), CODA wishes to know the

synchronization requirements for three data flows, Throttle Value. Again, since the

designer is a novice, CODA takes a default decision to map these data flows to a queued

message. This decision differs from the guidance provided by the designer in the

previous design.

B.3.2 The Completed Design

Figures 49 and 50 depict the design, generated by CODA for a novice designer.

Figure 49 gives the design for the cruise control subsystem. Only minor differences exist

between this solution and the solution generated with the assistance of an experienced

designer (see Figure 47). One difference appears at the interface between the Control

Auto Speed task and the Adjust Throttle task. In the previous design, the designer

505

506

S
e

le
ct

C
le

a
r

R
e

a
d

D
e

si
re

d
 S

p
e

e
d

B
ra

ke
E

n
g

in
e

M
o

n
ito

r
A

u
to

 S
e

n
so

rs

C
C

 L
e

ve
r

M
o

n
ito

r
C

ru
is

e
 C

o
n

tr
o

l L
e

ve
r

C
ru

is
e

 C
o

n
tr

o
l

E
ve

n
ts

B
ra

ke
 In

p
u

t

E
n

g
in

e
 In

p
u

t

T
im

e
r

E
xp

ir
a

tio
n

L
e

ve
r

In
te

rr
u

p
t

C
ru

is
e

 C
o

n
tr

o
l

In
p

u
t

A
u

to
 S

e
n

so
r

E
ve

n
t

C
C

 L
e

ve
r

E
ve

n
t

C
ru

is
e

C
o

n
tr

o
l

C
o

n
tr

o
l C

ru
is

in
g

S
p

e
e

d
C

o
n

tr
o

l

C
o

n
tr

o
l A

u
to

 S
p

e
e

d

S
p

e
e

d
C

o
m

m
a

n
d

A
d

ju
st

 T
h

ro
ttl

e
R

e
q

u
e

st
s

A
d

ju
st

 T
h

ro
ttl

e

T
h

ro
ttl

e
 P

o
si

tio
n

T
h

ro
ttl

e

T
im

e
r

E
xp

ir
a

tio
n

C
o

m
p

u
teR
e

a
d

C
a

lib
ra

tio
n

C
o

n
st

a
n

t

R
e

a
d

U
p

d
a

te

S
h

a
ft

R
o

ta
tio

n
C

o
u

n
t

R
e

a
ch

e
d

C
ru

is
in

g

M
a

in
ta

in
 T

im
e

r
E

xp
ir

a
tio

n

R
e

su
m

e
 T

im
e

r
E

xp
ir

a
tio

n

In
cr

e
a

se
 T

im
e

r
E

xp
ir

a
tio

n

D
e

te
rm

in
e

D
is

ta
n

ce
a

n
d

S
p

e
e

d

T
im

e
r

E
xp

ir
a

tio
n

S
h

a
ft

M
o

n
ito

r
S

h
a

ft
R

o
ta

tio
n

S
h

a
ft

In
te

rr
u

p
t

C
a

lib
ra

tio
n

In
p

u
t

T
im

e
r

E
xp

ir
a

tio
n

P
e

rf
o

rm
 C

a
lib

ra
tio

n

C
a

lib
ra

tio
n

B
u

tto
n

s

C
a

lib
ra

tio
n

C
o

n
tr

o
l

C
u

rr
e

n
t S

p
e

e
d

R
e

a
d

U
p

d
a

te

C
lo

ck

R
e

a
d

C
u

rr
e

n
t

T
im

e

In
iti

a
liz

e

D
is

ta
n

ceR
e

a
d

U
p

d
a

te

T
im

e
 o

f D
a

y

C
a

lib
ra

tio
n

S
ta

rt
 C

o
u

n
t

Figure 49. Cruise Control Subsystem Design - Novice Designer

507

M
ile

a
g

e
R

e
se

t
B

u
tt

o
n

s

M
o

n
ito

r
R

e
se

t
B

u
tt

o
n

s

T
im

e
r

E
xp

ira
tio

n

M
ile

a
g

e
 R

e
se

t
In

p
u

t
M

a
in

te
n

a
n

ce
D

is
p

la
y

C
h

e
ck

 M
a

in
te

n
a

n
ce

 N
e

e
d

T
im

e
r

E
xp

ira
tio

n

M
a

in
te

n
a

n
ce

D
is

p
la

y
D

a
ta

M
ile

a
g

e
D

is
p

la
y

C
o

m
p

u
te

 A
ve

ra
g

e
 M

ile
a

g
e

T
im

e
r

E
xp

ira
tio

n

F
u

e
l A

m
o

u
n

t

M
a

in
te

n
a

n
ce

 R
e

se
t

In
p

u
t

T
im

e
 o

f
D

a
y

F
u

e
l A

m
o

u
n

t

M
a

in
te

n
a

n
ce

R
e

se
t

B
u

tt
o

n
s

O
il

F
ilt

e
r

M
a

in
te

n
a

n
ce

C
h

e
ck

S
ta

tu
s

In
iti

a
liz

e

M
a

jo
r

S
e

rv
ic

e
M

a
in

te
n

a
n

ce

C
h

e
ck

S
ta

tu
s

In
iti

a
liz

e

A
ir

F
ilt

e
r

M
a

in
te

n
a

n
ce

C
h

e
ck

S
ta

tu
s

In
iti

a
liz

e

M
P

H C
o

m
p

u
te

A
ve

ra
g

e

In
iti

a
liz

e

M
P

G C
o

m
p

u
te

A
ve

ra
g

e

In
iti

a
liz

e

D
is

ta
n

ce

R
e

a
d U

p
d

a
te

T
im

e
 o

f
D

a
y

M
ile

a
g

e
D

is
p

la
y

D
a

ta

G
a

s
T

a
n

k

R
e

a
d

F
u

e
l

L
e

ve
l

In
iti

a
liz

e

C
lo

ck

R
e

a
d

C
u

rr
e

n
t

T
im

e

In
iti

a
liz

e

Figure 50. Monitoring Subsystem Design - Novice Designer

informed CODA that this message interface requires synchronization. Without such

information, CODA generates a queued message interface by default. The other

differences result from CODA’s inability to determine that the Calibration Start Count

and the Calibration Constant should be combined into a single data-abstraction module.

For the previous design, the experienced designer advised CODA to combine the two

modules. Without help from an experienced designer, CODA opts to leave the two

modules separate. As a result, CODA places one of the modules, Calibration Start Count,

inside of the Perform Calibration task and also shows an invocation from that task to the

Read operation of the Shaft Rotation Count module. As a secondary effect, CODA

assigns only two operations to the other module, Calibration Constant. For the remainder

of the cruise-control subsystem design that CODA generates for the novice designer, the

results appear identical to those generated by CODA with help from an experienced

designer.

Figure 50 shows the design for the monitoring subsystem, as generated by CODA

for a novice designer. No difference can be found between this design and the

comparable design generated by CODA with help from an experienced designer (see

Figure 48).

508

